Fundamentals of Combustion and Combustion Monitoring Chemicals

By, Zakir Atashbajiwal President, Altret Industries Private Limited

INTRODUCTION

Combustion Reactions

Factors Influencing Combustion and Heat Transfer

Ash Reactions

Effect of Alkali Compounds on Metals

Effect of Alkali Compounds on Refractory Melting Points of Some Ash Constituents Relevant to Fireside Problems

Indexes of Coal Ash Fusibility Silica Ratio Schaefer Ratio Dolomite Ratio Effect of Individual Oxides on Fusion Temperature Ash Deformation & Fusion Temperatures Fouling Tendency & Fouling Factors

Mechanism of Fireside Deposit Formation

HISTORY OF FIRE SIDE CHEMICALS

ACTION OF ALTRET- 95 SC SERIES OF COMBUSTION MONITORING CHEMICAL

Catalytic Action Anti-fouling Effect Anti-emission Characteristics OBJECTIVES OF PRESENT STUDY RESULTS & DISCUSSION CONCLUSIONS

INTRODUCTION:

• Combustion Reactions :

1. Heterogeneous Combustion :

 $C + \frac{1}{2} O_2 \rightarrow CO + 110.510 MJ$

2. Homogeneous Combustion :

$$C + \frac{1}{2} O_2 \rightarrow CO_2 + 282.974 MJ$$

3. Heterogeneous Reactions :

 $C + \frac{1}{2} O_2 \rightarrow 2CO - 172.882 MJ$

Hydrogen-Oxygen Reactions : $\frac{1}{2} H_2 + \frac{1}{2} O_2 \rightarrow OH$ $OH + \frac{1}{2}H_2 \rightarrow H_2O^l + 285.485 MJ$ \rightarrow H_2O^g + 241.951 *MJ* Water Gas Carbon Reactions : $C + H_2 O^g \rightarrow CO + H_2 - 131.44 MJ$ $C + 2H_2O^g \rightarrow CO_2 + 2H_2 - 90.418 MJ$ $CO + H_2O^g \rightarrow CO_2 + H_2 + 41.023 MJ$

Reaction Kinetics :

Overall Rate :

=

p_s

 P_1

 ΔE_i

R

$$R = \frac{k_1 \cdot k_2 \cdot p_s}{k_1 p_s + k_2 + k_4 p_1}$$

- K_i = Rate of ith reaction
 - = ko, i $e^{-\Delta Ei/RT}$
- Ko, i = Velocity constant for ith step
 - Partial Pressure of Reacting Gas, atm.
 - = Partial Pressure of Reaction product atm.
 - = Activation Energy of ith step
 - = Gas Constant
 - Temperature, K

Reaction Time/Burning Rate for Carbon

Particle: $t_b = k.do^2$, secs. k = 5000 for pulverised fuel = f (EA, VM, MC, A, \in)

The Rate of Reactions Can be Represented as :

Factors Influencing the Combustion reactions/ Efficiency

Fuel Quality

Particle Size

Reaction Surface Area

Air-Fuel Mixing-Velocity-Turbulence

Residence Time-Velocity/Size of Furnace

Bed Height

Furnace Configuration

Excess Air Ratio

Factors Influencing Heat Transfer :

Water Side Scaling Metal Resistance Gas Side Fouling Heat Transfer Coefficients : -Tube Size -Velocities -Reynolds No. -Nusselt's No.

Overall Heat Transfer Coefficient is given by

$$\frac{1}{u} = \frac{1}{h_g} + \frac{X_a}{K_a} + \frac{t}{K_t} \cdot \frac{d_o}{d_m} + \frac{X_c}{K_c} \cdot \frac{d_o}{d_i} + \frac{1}{h_w} \cdot \frac{d_o}{d_i}$$

Constituents of Coal Ash

Ash Reactions :

[a]	Combustion of Sulphur			:		
	S	+	0 ₂	\rightarrow	SO ₂	
	SO ₂	+	1/2 O ₂	\rightarrow	SO ₃	

[b] Ash Reactions with SO₃

 $\begin{array}{rll} Na_2O & + & 2SO_3 & \rightarrow & Na_2S_2O_7 \\ \mbox{[in Ash]} & \mbox{[From Combustion]} & \mbox{[Sodium PyroSulphate]} \end{array}$

The Melting Points	of These S	alts are
Sodium Sulphate	:	880° C
Sodium PyroSulphate	:	401° C
Potassium Sulphate	:	1069° C
Potassium PyroSulphate	e :	300° C

• EFFECT OF ALKALI COMPOUNDS ON METALS :

PyroSulphate, in particular, reacts very rapidly at temperatures above their melting points with protective iron oxide and iron to cause rapid corrosion of steels as per following reactions.

3Na ₂ S ₂ O ₇ -	F	Fe ₂ O ₃	\rightarrow	2 Na ₃ Fe (SO ₄) ₃
3K ₂ S ₂ O ₇	+	Fe ₂ O ₃	\rightarrow	2 K ₃ Fe(SO ₄) ₃
4 Na ₂ S ₂ O ₇	+	4 Fe	\rightarrow	$4Na_2SO_4 + 3FeSO_4 + FeS$
4 K ₂ S ₂ O ₇	+	4 Fe	\rightarrow	$4K_2SO_4 + 3FeSO_4 + FeS$

• Effect of Alkali Compounds on Refractory

Compound	Refractory Constituents	Temp °C	Results/Effect
Na ₂ O	Chromium	730	Liquid Formation
Na ₂ CO ₃	Alumina	730	Volume Expansion
Na ₂ SiO ₄	Alumina	750	Liquid Formation
Na	Silicate	800	Liquid Formation
Na ₂ CO ₃	Magnesia	840	Volume Expansion
Na ₂ CO ₃	Alumina	1090	Volume Expansion

Melting Points of Some Constituents of Ash Relevant to Fireside Problem :

Effect of Chlorides					
Constituents	Melting Point, °C				
NaCl	800				
KCI	776				
CaCl ₂	772				
FeCl ₃	282				
Effect of Alkali Metals & Sulphur					
Na ₂ CO ₃	851				
Na ₂ SO ₄	880				
K ₂ SO ₄	1069				
MgSO ₄	1124				
$Na_2S_2O_7$	401				
K ₂ S ₂ O ₇	300				
Na ₃ Fe(SO ₄) ₃	624				
K_3 Fe(SO ₄) ₃	618				
$Na_3AI(SO_4)_3$	646				
K ₃ Al(SO ₄) ₃	695				
Na ₂ SiO ₂	800				

Constituents	Melting Point, °C	
Eutectics :		
Na ₂ SO ₄ . NaCl	625	
$3K_2S_2O_7$. $Na_2S_2O_7$	280	
$Na_3Fe(SO_4)_3$. $K_3Fe(SO_4)_3$	552	
FeO. FeS	940	
Fe.FeS	965	
MgSO ₄ .Na ₂ SO ₄	660	
$Na_2O - SiO_2.Na_2SO_4$	635	
NaCl . Na ₂ CO ₃	633	
Na ₂ SO ₄ Na ₂ CO ₃	828	
Effect of Var	nadium	
V ₂ O ₅	690	
Na ₂ OV ₂ O ₅	630	
Na ₂ O .3 V ₂ O ₅	621	
5Na ₂ O .V ₂ O ₄ .11V ₂ O ₅	535	
$10Na_2O$. $7V_2O_5$	573	(
2MgO . V ₂ O ₅	835	
3 Mg O. V ₂ O ₅	1190	-

Effect of Individual Oxides on Fusion Temperature :

Oxides	Name of Oxides	Effect of Fusion Temperature Due to Increase in Oxide Content	
SiO ₂	Acidic	Decrease	
Al ₂ O ₃	Acidic	Increase	
SO ₃	Acidic	Decrease	
Ti O ₂	Acidic/Neutral	No Effect	
$P_2 O_3$	Acidic/Neutral	No Effect	
Fe ₂ O ₅	Basic	Decreases	
Ca O	Basic	Increase	
Mg O	Basic	Increase	
Na ₂ O	Basic	Decrease	
K ₂ O	Basic	Decrease	
$Cr_2 O_3$	Basic/Neutral	Increase	

Ash Deformation & Fusion Temperature :

[Koristkii's Correlation]

- T_d = Ash Deformation Temperatures
 - = 1094 + 42.5 K_{fu} °C
- $T_f = Ash Fusion Temperature$
 - = 1139 + 48.6 K_{fu} °C
- K_{fu} = Fusibility Coefficient

$$K_{fu} = \frac{SiO_2 + AI_2 O_3}{CaO + MgO + Fe_2O_3}$$

Fouling Tendency :

Fouling tendency of coal can be judged from ash analysis by calculating a fouling factor given by :

Fouling Factor = $\frac{[Fe_2O_3 + CaO + MgO + K_2O] \times Na_2O}{SiO_2 + Al_2O_3 + TiO_2}$

All Constituents in %

Table : Ash analysis of two British coals

Substances	Coal Depo	A sit Forming	Coal B Deposit Free		
S in Coal, %		1.53		1.73	
Ash in Coal, %		7.5	7.4		
SiO ₂ in Ash, %	46.3		40.6		
Al_2O_3 in Ash, %	26.8		33.5		
Fe_2O_3 in Ash, %	15.4		10.8		
MgO in Ash, %	1.3			3.0	
CaO in Ash, %	2.7			6.7	
TiO_2 in Ash, %	1.0			0.8	
Na ₂ O in Ash, %	2.2	Total Alkali	0.3 —	Total Alkali	
K ₂ O in Ash, %	3.1-	5.3%	0.8 —	1.1%	
SO_3 in Ash, %		0.7		4.0	
Fouling Factor	0.73		0.09		

Mechanism of Deposit Formation (W.M. Crane, BCURA Report No. 254, 1962)

 Alkali Sulphates & PyroSulphate has low melting point

• They have higher affinity towards high temperature metal surfaces.

• The higher forces of adhesion and preferred direction of orientation initiates deposit formation.

• W.M. Crane proposes a five layer deposit formation hypothesis.

FIRE SIDE TREATMENT

WHAT ?

Monitoring the combustion Why ?

- To improve combustion efficiency.
- To reduce fouling.
- To reduce clinker formation.
- To reduce pollution.

HISTORY OF FIRESIDE TREATMENT :

• In early seventies problem of hard clinker formation with steam coal was a major area of concern.

 Sodium chloride & Vanadium based fuel additives tend to soften the clinker.

 \bullet But after a decade problem of metal sponge $Na_2OV_2O_5$ observed.

• In eighties with better understanding of combustion, fouling, eutectic structure of ash, Ammonium Chloride, Magnesium Oxide, Nitrate & Oxychlorate based Compounds came in to existence. They worked well, but offered higher NO_x emissions.

 Much work on better combustion catalyst and antiemissions catalyst proceeded at a rapid rate due to increased demand of higher efficiencies at lower emission levels in nineties.

ALTRET 95 COMBUSTION MONITORING CHEMICAL $(C.M.C)^{TM}$ IS A NOVEL COMBUSTION CATALYST DEVELOPED BY THE AUTHOR.

IT HAS THREE DISTINCT EFECTS

- Catalytic Effect
- Anti Fouling Effect

- Anti-Emission Effect

CATALYTIC ACTION OF ALTRET-95 CMC

Provide Better Pore Surface Area

Normal Coal Particle

Catalyzed Coal Particle

• Improved Oxygen Penetration :

The high velocity cobalt and iron catalyst penetrates the coal particle and enhance the micro surface area for reaction. The oxychlorate provides ionic oxygen for catalytic combustion and all the major reactions get enhanced. The nitrate decomposition provides $N_2 O_2$ which catalyses gas phase reactions and volatiles combustion. The presence of CO enhance gas solid reactions. The sequences of reactions may be represented as :

- Nitrate De Composition: $2NO_3 \rightarrow N_2O_2 + 2O_2$
- Gas Phase Reactions $H_2 + 2\overline{O} \xrightarrow{N_2O_2} 2\overline{O} \overline{H}$ $2\overline{O} \overline{H} + H_2 \xrightarrow{N_2O_2} 2H_2O$ $CO + \overline{O} \xrightarrow{N_2O_2} CO_2$
- VolatileCombustion

$$C_x H_y + (x+y)\overline{O} \xrightarrow{N_2 O_2} XO + y\overline{O} \overline{H} + \frac{z}{2}O_2$$

• Gas - Solid Reactions $S + 2\overline{O} \xrightarrow{C_O} SO_2$ $C + \overline{O} \xrightarrow{C_O} CO$

- Antifouling effect may be obtained by the following route :
 - @ By changing preferred direction of orientation of particle.
 - @ By forming a protective layer of vapours on surfaces.
 - @ By retarding ash reactions leading to formation of Sodium and Potassium Sulphates and PyroSulphate.
 - $\rm NH_4Cl~\&~Mg(OH)_2$ vapours has very high affinity towards $\rm SO_3$ and they form ammonium and magnesium sulfates which has much higher melting points than that of sodium and Potassium Sulfates

@ By increasing Ash Fusion temperature through changing the Eutectic Structure of ash.

ANTI-EMISSION ACTION OF ALTRET-95 CMC

• Control of Co :

 $CO + \frac{1}{2}O_2 \xrightarrow{Co \& N_2 O_2} CO_2$

Control of NO_{x :}

$2 NO_x \xrightarrow{Co \& N_2 O_2} N_2 + XO_2$ Redn. Catalyst $N_2 + XO_2$

• Control of Particulate Emissions :

- The Parent ash in fuel & unburnt carbon will appear as particulate emissions in stack The only solution is to increase collections efficiency
- The only solution is to increase collections efficiency of ESP

	Col	lection	Efficiency =	1-e ^{-wk}
--	-----	---------	---------------------	---------------------------

- k = Specific Collection Area = A/Q
- A = Projected area of electrodes, m^2
- $Q = Volume flow of gas, m^3/s$
- w = Effective migration velocity, m/s.

• ALTRET – 95 CMC promotes formation of magnesium and ammonium sulphates which increases "ASH CONDUCTIVITY" which enhance "EFFECTIVE MIGRATION VELOCITY"& Hence improves ESP Collection Efficiency.

• To quantify the performance improvement in large power plants through use of ALTRET- 95 Combustion Monitoring Chemical.

• To establish the quantitative of influence ALTRET-95 Combustion Monitoring Chemical in reducing stack emissions in large power station.

CASE STUDY

KLTPS

PANANDHRO

BOILER DETAILS

> BOILER TYPE

: Pulverised Fuel

> MAKE : I

: BHEL

> CAPACITY

: 325 TPH

> PRESSURE

: 90 kg/cm²

> FUEL

: Lignite

PROBLEM FACED

> Heavy Clinkering in Furnace Zone

> Heavy Fouling in Resuction Duct

> Excess SO_2 due to high S % in lignite

SOLUTION

Chemical suggested: "ALTRET" 95 SCA

> Dosage: 40 ppm

REDUCTION IN UNBURNT CARBON IN BOTTOM ASH

Catalytic Effect

REDUCTION IN TOTAL SPRAY WATER (TPH)

Anti-Fouling Effect

IMPROVEMENT IN S.H. TEMPERATURE

Anti-Fouling Effect

Anti-Emission Effect

REDUCTION IN SO2 EMMISION

RESULTS

Parameter	W/O Chem.	With Chem.	% Improvement
Aux. Power Consumption	105.78	102.39	3.21
Boiler Eff. (%)	74.13	75.96	2.74
Generation Eff. (%)	24.19	24.79	2.51
SO ₂ (ppm)	708.98	540.36	23.78
SPM	93.04	64.27	30.92
Fuel Savings (T/Yr)	13,788.50		
Net Eco. Savings (Rs/Yr)		11.977 k	acs

CONCLUSION

- The benefits observed are quite high due to:
 - Longer boiler availability
 - Reduction in down time
 - Reduction in oil consumption
 - Reduced boiler outage due to reduction in clinker formation
 - More M.W.H generation due to reduction in fouling and cleaning time.

CASE STUDY

TATA CHEMICALS

LTD.

MITHAPUR

BOILER DETAIL

SPECIFICATIONS	CEHP – 2	HPB - 3
Make	Combustion Engineering - USA	LLB - Germany
Туре	P.F. Fired	C.F.B.C.
Fuel	Enviro Coal	75% Petcoke + 25% Enviro Coal
Steaming Rate	136 T/h	185 T/h
Working Pressure	105 Kg/cm ²	105 Kg/cm ²
Max. Steam Temperature	510 – 515 °C	560 °C
Fuel Consumption	500 T/day	525 T/day

PROBLEM FACED

- Heavy Clinker formation in Super Heater Region.
- > Higher Unburnt Carbon
- > Require Higher Boiler Efficiency
- > Excess SO₂ due to high S % in Pet-coke

SOLUTION

For CEHP # 2 Boiler – 100 % Enviro Coal A Precise dosage of "ALTRET" 95 SC Combustion Monitoring Chemical (CMC)TM is suggested @40 ppm

For HPB # 3 Boiler, Dual Fuel Fired (Petcoke- 75% + Enviro Coal 25%)

On Petcoke @ 50 ppm of "ALTRET" 95 R & On Enviro Coal @ 70 ppm of "ALTRET" 95 SCA

BOILER CEHP # 2 EVALUATION

Trendsetters

Fig. - 9 : IMPROVEMENT IN S.E.E IN CEHP # 2

HPB#3 EVALUATION

BOILER

Fig. - 13 : MAIN STEAM TEMERATURE IN HPB # 3

Fig. - 23 : REDUCTION IN SEC IN HPB # 3

RESULTS

CEHP # 2	WITHOUT CHEMCIAL	WITH CHEMCIAL
CV Kcal/kg	5120.43	5054.7
${ m M}_{ m fuel}{ m TPD}$	517.00	521.00
M_{steam} TPD	3274.43	3277.6
∆ h kJ/kg	2883.99	2876.76
Q _{in} MW	128.24	127.534
Q _{out} MW	109.30	109.13
S.E.E kg/KWH	1.36066	1.372
S.E.C KWH/kg	1.173	1.162
BOILER EFFICIENCY %	85.302	86.042

RESULTS

HPB # 3	WITHOUT CHEMCIAL	WITH CHEMCIAL
CV Kcal/kg	7023.50	7011.57
${ m M}_{ m fuel}{ m TPD}$	520.86	512.29
M_{steam} TPD	4496.86	4431.16
∆ h kJ/kg	2966.34	2970.29
Q _{in} MW	153.21	173.33
Q _{out} MW	154.39	152.34
S.E.E kg/KWH	1.3937	1.4044
S.E.C KWH/kg	1.15751	1.13774
BOILER EFFICIENCY %	87.373	88.047

ECONOMIC ANALYSIS

TABLE- A - 5 :- ECONOMIC ANALYSIS: CEHP # 2

I.) SAVING DUE TO REDUCTION IN FUEL CONSUMPTION

1.)	FUEL SAVING BY DIRECT METHOD:	0.94%
2.)	FUEL SAVING BY INDIRECT METHOD:	0.37%
3.)	AVERAGE FUEL SAVINGS CONSIDERING	0.65%
	BOTH METHOD	
4.)	Avg. Fuel Consumption (TPD)	500.00
5.)	Fuel savings (TPD)	3.25
6.)	Economic savings per day	Rs.6175.00
	(Fuel cost @ Rs. 1900.00/Ton)	

	®
Altre	T
trandsat.	-
Trenusette	rs

_ \			
6.)	Net Economic savings	Rs. 493.07	Per day
0.)	(@ 40 ppm & Rs. 285.00/kg)	1.5. 07 00.00	per day
5)	Chemical cost	Rs 5700.00	per dav
	I.(6) + II.(3)		
4.)	TOTAL ECONOMIC SAVINGS :	Rs. 6193.07	Per day
		I	1 7
3.)	Total economic savings @ Rs. 0.50/KWH	Rs. 18.07	per day
	V = 415 volts $\cos \varphi = 0.85$		
	$P = 1.73 \text{ V.I. } \cos \varphi$		
2.)	Total reduction in KWH/Day	36.146	KWH/Day
1.)	Total Ampere Load Reduction	2.465	Ampere

TABLE- B - 5 :- ECONOMIC ANALYSIS: HPB # 3

	I.)	SAVING DUE TO REDUCTION IN FUEL CONSUMPTION		Trendsetters
1.)		FUEL SAVING BY DIRECT METHOD:	1.67%	
2.)		FUEL SAVING BY INDIRECT METHOD:	0.554%	
3.)		AVERAGE FUEL SAVINGS CONSIDERING	1.107%	
		BOTHMETHOD		
4.)		Avg. Fuel Consumption (TPD)	525.00	
5.)		Fuel savings (TPD)	5.118	
			D 0 704 0 0	
6.)		Economic savings per day	Rs.9724.20	
		(Fuel cost @ Rs. 1900.00/Ton)		
	II.)	SAVING DUE TO REDUCTION IN AU	XILLARY POWER	

1.)	Total Ampere Load Reduction	13.06	Amp.
2.)	Total reduction in KWH/Day	191.50	KWH/Day
	$P = 1.73 \text{ V.I. } \cos \varphi$		

 $V = 415 \text{ volts} \qquad \cos \varphi = 0.85$

3.) Total economic savings @ Rs. 0.50/KWH

Rs. 95.75 per day

III.) SAVING DUE TO REDUCTION IN LIME STONE ADDITION

1.)	Average Reduction In Lime Stone addition	4.80	TPD
2.)	Saving due to reduction in Lime stone	Rs. 9600.00	
	(@ Rs. 2000.00 Tons)		
3.)	TOTAL ECONOMIC SAVINGS :	Rs. 19,419.95	Per day
	I .(6)+II.(3)+III.(2)		
4.)	Chemical cost	Rs. 9303.11	per day
	(367.50 TPD Petcoke @ 50 ppm ÄLTRET"95 R & Rs. 3	365.00/kg)	
	(158.5 TPD Coal @ 70 ppm ÄLTRET"95 SCA & Rs.2	34.00/kg)	
6.)	Net Economic savings	Rs. 10,116.00	Per day
7.)	Net Annual savings	Rs. 35,40,6	00.00 /Yr.

CONCLUSION

- The benefits observed are quite high due to:
 - Longer boiler availability
 - Reduction in down time
 - Reduction in oil consumption
 - Reduced boiler outage due to reduction in clinker formation
 - More M.W.H generation due to reduction in fouling and cleaning time.

CASE STUDY

MANKGARH CENENT CHANDRAPUR

BOILER DETAILS

- **BOILER TYPE** : F.B.C
- MAKE : CVL
- **CAPACITY** : 30 TPH
- PRESSURE

: 32 kg/cm²

• FUEL

: Coal

PROBLEM FACED

• Higher Unburnt Carbon in Bottom & Fly Ash

• Require improvement in Boiler Efficiency

SOLUTION

• Chemical suggested: "ALTRET" 95 SCA

• Dosage: 50 ppm

Catalytic Effect

Catalytic Effect

EFFECT OF IMPROVEMENT IN EVAPORATION RATIO 4.90 **WITHOUT** WITH 4.80 **CHEMICAL CHEMICAL** 4.70 RATIO 4.60 4.50 4.40 4.30 4.20 5 7 2 3 6 8 9 10 11 1 4 **NO. OF DATAS** R Altret - DATAS — - AVERAGE Trendsetters

Anti-Fouling Effect

REDUCTION IN DRAUGHT LEVEL AT ECONOMISER

Anti-Fouling Effect

IMPROVEMENT IN TEMP. DIFFERENCE IN ECONOMISER

Anti-Emission Effect

RESULTS

Parameter	W/O Chem.	With Chem.	% Improvement		
Boiler Eff. (%)	84.74	85.68	1.109		
Combustion Eff. (%)	78.00	79.80	2.30		
Evaporation Ratio	4.34	4.60	5.99		
Unburnt Carbon in Bottom Ash (%)	6.89	5.49	20.31		
Unburnt Carbon in Fly Ash (%)	7.97	6.30	20.95		
Fuel Savings (T/Yr)	900				
Net Eco. Savings (Rs./Yr)	6,28,320/-				

CONCLUSION

• Reduction in feeder RPM & improved boiler and combustion efficiency and also by reduction in unburnt carbon shows a definite reduction in fuel consumption.

THANK

YOU

• Indexes of Coal Ash Fusibility :

1. Silica Ratio (SR):

$$SR = \frac{SiO_2}{SiO_2 + Fe_2O_3 + CaO + Mg}$$

 $SR \leq 0.5$: Fouling Inevitable

2. Schaefer's Ratio (SCR): $SCR = \frac{Al_2O_3}{SiO_2} \times \frac{[SiO_2 + Al_2O_3]}{[Fe_2O_3 + 0.6\{CaO + MgO + Na_2O + K_2O\}]}$

 $SCR \leq 0.1$: Fouling Inevitable

3. Dolomite Ratio (DR): $DR = \frac{CaO + MgO}{Fe_2O_3 + CaO + MgO + Na_2 + K_2O}$

 $DR \leq 0.5$: Fouling Inevitable

METHODOLOGY AND MEASUREMENTS :

To increase the correct qualitative and quantitative influence of "ALTRET" 95SAC combustion catalyst in reducing unburnt carbon levels in ash, fouling of heat transfer surfaces, clinkering and SO₂ emissions, two stages of investigations were planned on Lignite based Unit No.1 & Unit No. 3 of 70 MW capacity each at KLTPS, GEB, Panandhro, Gujarat. Boiler of Unit No. 1 is essentially multi-tier, tangentially fired PF boiler employing beater wheel type mills and generating steam at 94 kg/cm² pressure, 515°C temperature and 325 T/h flow rate. The boiler of Unit No. 3 is a single tier, PF boiler having the same rated parameters.

• Stage- I : Base Data Generation :

During the first stage of trial various data on boiler parameters and emission characteristics was collected from 15th July 2001 to 12th August 2001 [for about 500 hours] without use of any fuel additive. This data forms the basis for comparison.

The data collected include hourly variation of steam pressure, steam temperature , feed water flow rates, steam generation rates, various temperature levels and draft levels. The SO₂ emissions were measured once or twice in a day as per the convenience. The hourly data of boiler parameters so collected is transformed in daily averages and finally to an overall average over a trial period. [One overall average data point represents the average of about 500 hourly data points]. This data formed not only the base data but provided sufficient insight on the actual operations of both the boilers.

• Stage- II : Data Generation with Combustion Catalyst :

In the second stage of trial, "ALTRET" 95 SCA combustion catalyst was dosed at 20ppm level [30gms/tonne of lignite] from 14th August 2001 to 4th Sept. 2001 and the data was collected in a similar way as in stage- I.

The water quality, fuel quality, unburnt carbon levels in ash and SO₂ emissions were regularly measured as per relevant standards [18-31] for both stages of trial. The samples o lignite from each mill feeders were collected twice in a day from Unit No. 1 & Unit No. 3. the daily samples so collected were mixed and its proximate analysis and GCV were evaluated for both the boiler. The overall average values are given below in Table-1.

Table – 1 Overall Average Lignite Quality During both Stages of Trial

Sr.	Parameters	Unit No.1		Unit No. 3	
No		Stage- I	Stage-II	Stage – I	Stage-II
1.	Total Moisture, %	34.85	33.29	33.18	31.75
2.	Fixed Carbon, %	19.7	18.23	21.17	19.12
3.	Volatile, Matter, %	27.89	26.04	29.68	27.61
4.	Ash Content, %	17.56	22.44	15.97	21.52
5.	Sulphur, %	1.93	2.204	1.93	2.204
6.	GCV, MJ/kg	11.886	11.309	13.024	11.677

RESULTS & DISCUSSION : • Catalytic Effect :

The catalytic effect of "ALTRET" 95 SCA fuel additive may be ascertained by reduction in unburnt carbon levels in ash. Fig. 1 shows the variation of unburnt carbon in bottom ash of Unit No. 1. it is observed that average unburnt carbon is reduced from 12.59% to 7.56% indicating a relative decrease by 39.95 through the use of "ALTRET" 95 SCA Combustion Monitoring Chemical. It is also worth to mote here that this decrease is achieved in spite of the fact that the fuel contains more ash in second stage of trial. There is also marginal reduction in unburnt carbon levels in bottom ash of Unit No. 3 The reduction in Unit No. 3 is marginal which is due to problem of single tier firing.

This reduction in unburnt carbon levels in bottom ash clearly signifies catalytic effect of this fuel additive which improves reaction area & oxygen penetration. Due to such multiple chain action, the unburnt carbon levels in ash reduces.

Fig. 1 Reduction in Unburnt Carbon Levels in Bottom Ash Through Use of "ALTRET" 95SCA Combustion Monitoring Chemical [Unit No.1]

Fig: 2 Pressure Drop Across Air-preheater during Both Stages of Trial [Unit No.1] rrendsetters Without Chemical ----- Without Average - With Chemical ----- With Average

• Anti Fouling Effect :

Fig. 2 & 3 shows the pressure drop across air pre-heater and boiler respectively in Unit No. 1. In boiler No. 1 the pressure across air-pre-heater is reduced from 82.07 mm of H_2O to 71.26mm of H_2O by about 13.17% while across the boiler as a whole it reduced from 196.39 mm of H_2O to 188.16 mm of H_2O indicating a reduction by 4.19%.

Anti-emission characteristics :

Fig. 8 and Fig. 9 highlights the influence of "ALTRET" 95 SCA combustion monitoring chemical on SO_2 emission in Unit No. 1 & unit No. 3, respectively.

A remarkable decrease from 1242.35 ppm to 994.54ppm i.e. 19.95% in Unit No. 1 & from 1243.41 ppm to 946.52ppm indicating a decrease by 23.88% in Unit No. 3 is observed through use of "ALTRET" 95 SCa combustion monitoring chemical.

Further, it is worth to mention here that during second stage of trial, sulphur content was higher [2.204% in second stage] as compared to that in 1st stage [1.93% in 1st stage]. If one assumes same sulphur content in fuel, SO₂ emission may be reduced by about 40%.

